K - Chemistry.COM

Henderson Hasselbalch Equation Worksheet

Henderson-Hasselbalch Equation Worksheet

Worked example

B.5 Calculate the pH of a solution containing $0.200 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ ethanoic acid ($K_a = 1.74 \times 10^{-5} \,\mathrm{mol}\,\mathrm{dm}^{-3}$) and $0.250 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ sodium ethanoate.

Worked examples

B.6 Calculate the pH of a buffer solution containing $0.0550 \,\mathrm{mol}\,\mathrm{dm}^{-3}\,\mathrm{H}_2\mathrm{PO}_4^-$ (p K_a =7.21) and $0.0450 \,\mathrm{mol}\,\mathrm{dm}^{-3}\,\mathrm{HPO}_4^{2-}$.

B.7 Calculate the pH of a solution containing $0.400 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ ammonia (p $K_b = 4.75$) and $0.200 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ ammonium chloride.

Worked examples

B.8 A buffer solution is formed when $30.0 \, \mathrm{cm}^3$ of $0.100 \, \mathrm{mol \, dm}^{-3}$ potassium dihydrogen phosphate (KH₂PO₄) is added to $40.0 \, \mathrm{cm}^3$ of $0.110 \, \mathrm{mol \, dm}^{-3}$ disodium hydrogen phosphate (Na₂HPO₄). p K_a for H₂PO₄⁻ is 7.21. Calculate the pH of the mixture.

B.9 HEPES is used in some biological buffers. A buffer solution can be made by dissolving sodium hydroxide in a HEPES solution.

Calculate the pH of the buffer solution formed when 20.0 g of sodium hydroxide is added to $1.00 \,\mathrm{dm^3}$ of a $1.00 \,\mathrm{mol}\,\mathrm{dm^{-3}}$ solution of HEPES (p K_a = 7.5). Assume that there is no change in volume when the sodium hydroxide is added.

Worked example

B.10 A student wants to make up a buffer solution at pH 7.7 using $0.100 \,\mathrm{mol}\,\mathrm{dm}^{-3}$ solutions of HEPES (p K_a =7.5) and its sodium salt. Calculate how much of each solution must be used to make $500 \,\mathrm{cm}^3$ of a buffer of pH 7.7.