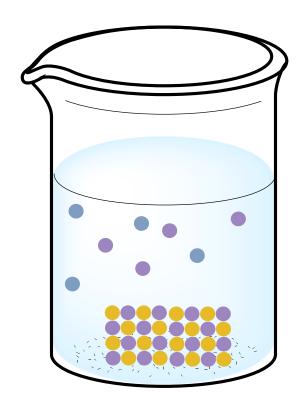


M6 Part 1 - buffers

Chemistry - University Preparation (Castlebrooke SS Secondary School)

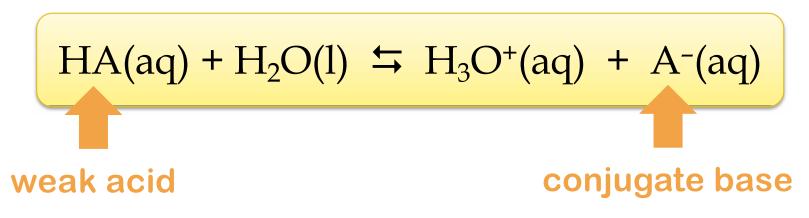
Scan to open on Studocu



Downloaded by Montada Mahmoud (montada78@gmail.com)

The Common-Ion Effect

Application of Le Chatelier's Principle:

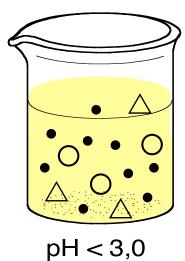

 addition of a common ion to an equilibrium will cause it to shift in order to counter-act that addition

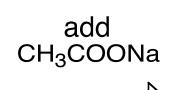
AgCl (s)
$$\Rightarrow$$
 Ag⁺(aq) + Cl⁻(aq)
Add NaCl: NaCl(s) \rightarrow Na⁺(aq) + Cl⁻(aq)

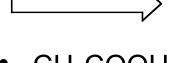
The Common-Ion Effect

Buffers are an example of the common ion effect:

If we add a salt of the conjugate base (example = NaA), according to Le Chatelier's Principle, the equilibrium will <u>move to the left</u>


consequence: reduction of the ionization of the weak acid!


tions


docu

Buffer So

	CH ₃ COOH(aq) -	+ H ₂ O(l)	\Rightarrow H ₃ O ⁺ (aq) +	CH ₃ COO ⁻ (aq)
Initial	12	-	0	0
Change	-3	-	+3	+3
Equilibrium	9	-	3	3
Add		-		+5
Initial	9	-	3	8
Change	+2	-	-2	-2
Equilibrium	11	-	1	6

• CH_3COOH $\triangle CH_3COO^ O H_3O^+$

CHM1311

Some real numbers...

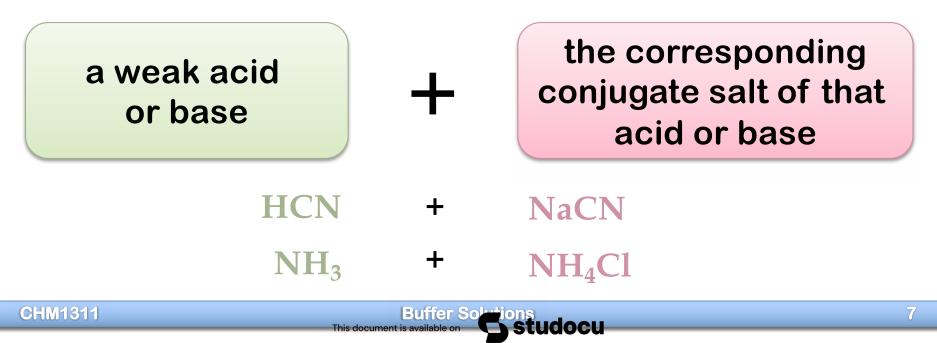
$CH_3COOH(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + CH_3COO^-(aq)$

TABLE 17.1	The Effect of Added Acetate Ion on the Dissociation of Acetic Acid					
[CH ₃ COOH] _{init}	[CH ₃ COO ⁻] _{added}	% Dissociation*	H_3O^+	pН		
0.10	0.00	1.3	1.3×10^{-3}	2.89		
0.10	0.050	0.036	3.6×10^{-5}	4.44		
0.10	0.10	0.018	1.8×10^{-5}	4.74		
0.10	0.15	0.012	1.2×10^{-5}	4.92		

*% Dissociation = $\frac{[CH_{3}COOH]_{dissoc}}{[CH_{3}COOH]_{init}} \times 100$

CHM1311

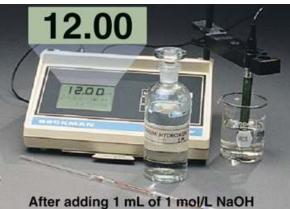
Your Turn...


What is the effect on the pH of adding NH_4CI to a solution of 0.25 M $NH_3(aq)$?

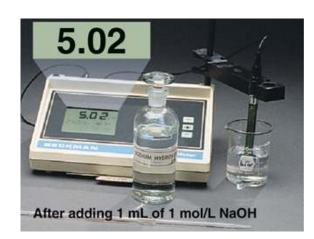
 $NH_3(aq) + H_2O \implies NH_4^+(aq) + OH^-(aq)$

- 1. the pH will increase
- 2. the pH will decrease
- 3. the pH will not change
- 4. I'm not sure

Buffer Solutions


- The function of a buffer is to resist changes in the pH of a solution when either H_3O^+ or OH^- are added
- Buffers are just a special case of the common ion effect

Buffer Solutions



CHM1311

Buffer Solutions

Buffered Solution Characteristics

- in a buffer solution, the acid and base must not neutralize one another
 - we must therefore use acid/base conjugate pairs:

$HA + A^{-} \leftrightarrows A^{-} + HA$ Identity Reaction

- a buffer contains relatively high amounts of a weak acid and its conjugate base (or vice-versa)
 - if H_3O^+ is added, it will react with the **base**
 - if OH⁻ is added, it will react with the <u>acid</u>
- the pH is determined by the <u>ratio</u> of the concentrations of the acid and base

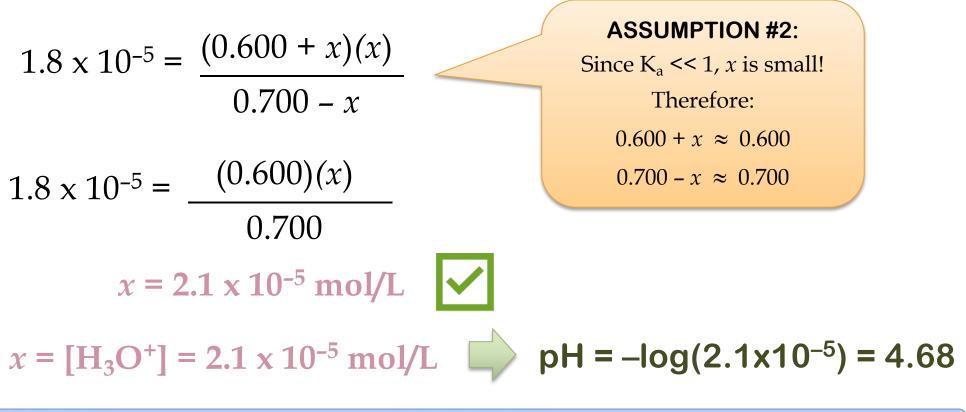
Buffer So

Example: Preparing a buffer solution

What is the pH of a buffer that has $[CH_3COOH] = 0.700 \text{ M}$ and $[CH_3COO^-] = 0.600 \text{ M}$?

 $CH_3COOH (aq) + H_2O \implies H_3O^+(aq) + CH_3COO^- (aq) K_a = 1.8 \times 10^{-5}$

$CH_3CO_2H + H_2O \rightleftharpoons H_3O^+ + CH_3CO_2^-$


I	0.700	-	0	0.600
С	- <i>x</i>	-	+ <i>x</i>	+ <i>x</i>
E	0.700 - x	-	x	0.600 + x

$$K_{a} = \frac{[H_{3}O^{+}][CH_{3}CO_{2}^{-}]}{[CH_{3}CO_{2}H]}$$

Example: Preparing a buffer solution

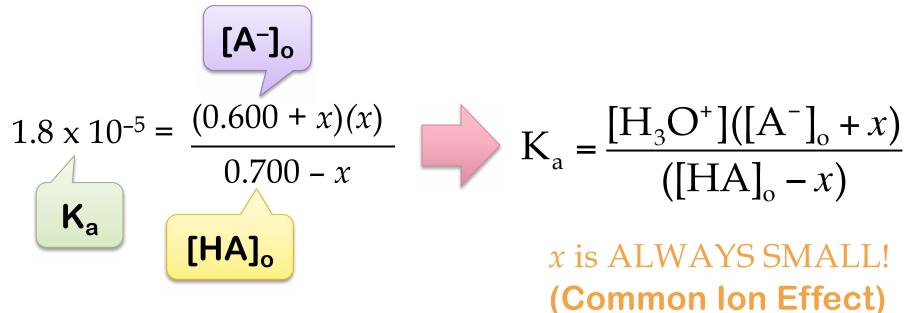
What is the pH of a buffer that has $[CH_3COOH] = 0.700 \text{ M}$ and $[CH_3COO^-] = 0.600 \text{ M}$?

 $CH_3COOH (aq) + H_2O \implies H_3O^+(aq) + CH_3COO^- (aq) K_a = 1.8 \times 10^{-5}$

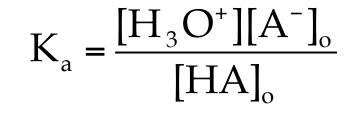
CHM1311

Downloaded by Montada Mahmoud (montada78@gmail.com)

This document is available on


Buffer Solutions

studocu


11

pH of Buffer Solutions

• Note the key step in the previous calculation:

For buffers, the equation simplifies to:

Buffer Solutions

The Henderson-Hasselbalch Equation

Rearranging this equation for [H₃O⁺] gives:

$$[H_3O^+] = \frac{K_a[HA]}{[A^-]}$$

$$-\log[H_{3}O^{+}] = -\log\left(\frac{K_{a}[HA]}{[A^{-}]}\right)$$

$$-\log[H_{3}O^{+}] = -\log K_{a} - \log \frac{[HA]}{[A^{-}]}$$

$$pH \qquad pK_{a}$$

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

Henderson-Hasselbalch Eqn

Downloaded by Montada Mahmoud (montada78@gmail.com)

tions

docu

Buffer Sol

s document is available on

Your Turn...

According to the H-H equation, when [HA] = [A-], the pH is equal to:

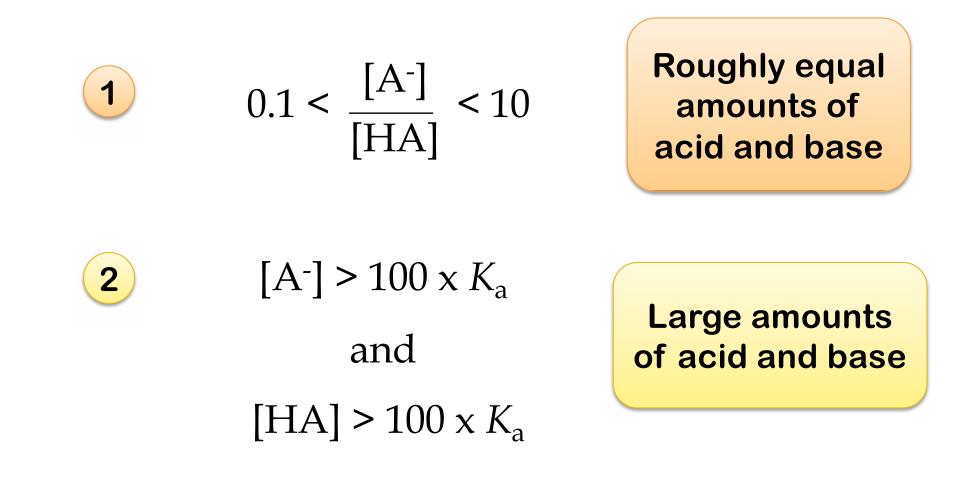
- 1. 1
- 2. 0
- 3. -рКа
- 4. pKa
- 5. I'm not sure

The Henderson-Hasselbalch Equation

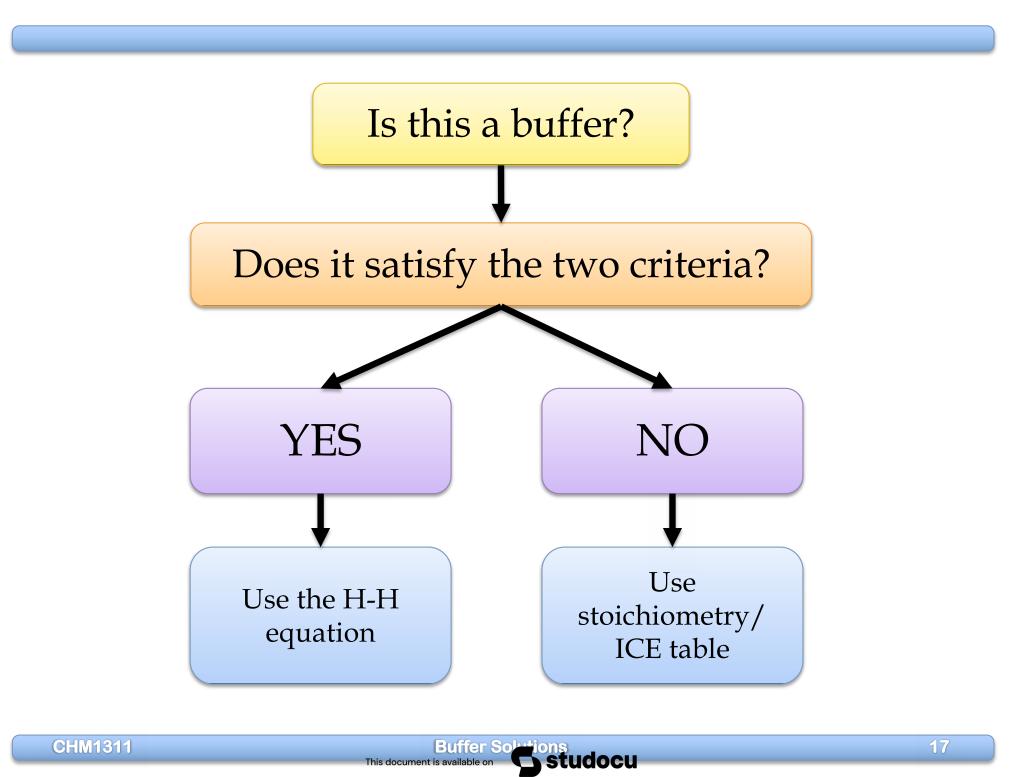
buffer solutions are most effective when
 [HA] ≈ [A⁻]

$$\log \frac{[A^-]}{[HA]} \approx \log(1.0) \approx 0.0$$

$$pH = pK_a + log \frac{[A^-]}{[HA]} \approx pK_a$$


 therefore, a buffer solution is most effective when pH ≈ pK_a

Buffer So


tions

docu

The Two Criteria for the HH Equation

Buffer Solutions

CHM1311

This document is available on

Example: Using the HH equation

25.0 g of propionic acid (CH₃CH₂COOH) and 36.2 g of sodium propionate (CH₃CH₂COONa) are mixed in a 1.00 L of solution. What is the pH?

WANT: pH = ? HAVE: V = 1.00 Lm HA = 25.0 g m NaA= 36.2 g NEED: $K_a = 1.30 \times 10^{-5}$ MM of HA = 74.1 g/mol MM of NaA = 96.1 g/mol

$$? \frac{\text{mol HA}}{\text{L}} = \frac{25.0 \text{ g HA}}{1.00 \text{ L}} \times \frac{\text{mol HA}}{74.1 \text{ g HA}} = 0.337 \text{ mol/L}$$
$$? \frac{\text{mol A}^{-}}{\text{L}} = \frac{36.2 \text{ g NaA}}{1.00 \text{ L}} \times \frac{\text{mol NaA}}{96.1 \text{ g NaA}} \times \frac{1 \text{ mol A}^{-}}{1 \text{ mol NaA}} = 0.377 \text{ mol/L}$$

Example: Using the HH equation

25.0 g of propionic acid (CH₃CH₂COOH) and 36.2 g of sodium propionate (CH₃CH₂COONa) are mixed in a 1.00 L of solution. What is the pH?

Is this a buffer?

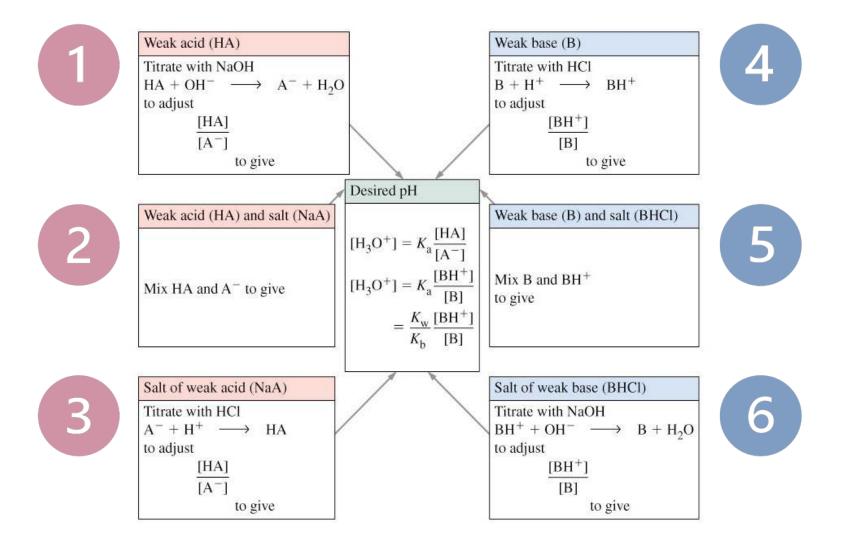
1
$$0.1 < \frac{[A^-]}{[HA]} < 10$$
 2 [HA] and $[A^-] > 100 \times K_a$
= 1.12 10⁻¹ M >> 10⁻⁵

Example: Using the HH equation

25.0 g of propionic acid (CH₃CH₂COOH) and 36.2 g of sodium propionate (CH₃CH₂COONa) are mixed in a 1.00 L of solution. What is the pH?

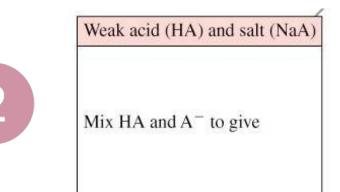
$$pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$$
$$= -\log(1.8 \times 10^{-5}) + \log\left(\frac{0.377}{0.337}\right)$$
$$= 4.89 + 0.0487$$
$$= 4.94$$

Your Turn...

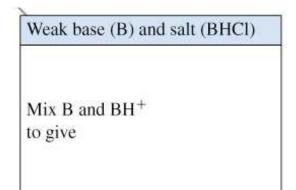

Without using a calculator, which of the following HA/A⁻ buffers has the lowest pH?

$$HA + H_2O \implies A^- + H_3O^+ = 4.8 \times 10^{-5}$$

- 1. 0.100 M HA / 0.200 M A⁻
- 2. 0.200 M HA / 0.200 M A⁻
- 3. 0.200 M HA / 0.100 M A⁻
- 4. I'm not sure



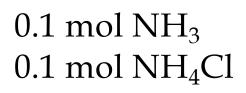
6 ways to make a buffer...


ACIDIC = $HA \& A^{-}$

- high [HA] and [A⁻]
- [HA] ~ [A⁻]

$BASIC = B \& HB^+$

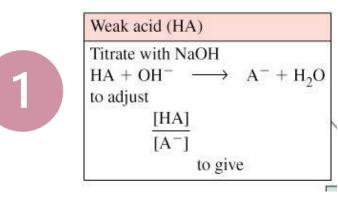
- high [B] and [HB⁺]
- [B] ~ [HB+]



0.1 mol HCN 0.1 mol NaCN



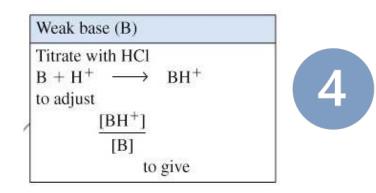
CHM1311


ACIDIC = $HA \& A^{-}$

What if we have HA but no NaA?

0.2 mol HCN 0.1 mol NaOH

	HCN +	+ OH	> CN ⁻ +	H ₂ O
BEFORE	0.2 M	0.1 M	0	-
AFTER	0.1 M	0	0.1 M	_

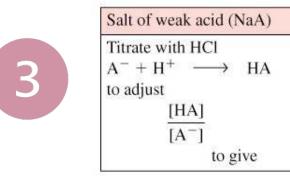

BASIC = B & HB⁺

What if we have B but no HBCl?

0.2 mol NH₃ 0.1 mol HCl

	$NH_3 + H_3O^+ \rightarrow NH_4^+ + H_2O$				
BEFORE	0.2 M	0.1 M	0	-	
AFTER	0.1 M	0	0.1 M	_	

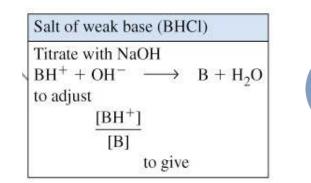
CHM1311


ACIDIC = HA & A^-

What if we have NaA but no HA?

0.2 mol NaCN 0.1 mol HCl

	CN- +	+ H₃O+ -	> HCN ·	+ H ₂ O
BEFORE	0.2 M	0.1 M	0	_
AFTER	0.1 M	0	0.1 M	_


BASIC = B & HB^+

What if we have HBCl but no B?

0.2 mol NH₄Cl 0.1 mol NaOH

	$NH_4^+ + OH^- \rightarrow NH_3 + H_2O$					
BEFORE	0.2 M	0.1 M	0	-		
AFTER	0.1 M	0	0.1 M	_		

CHM1311

This document is available on

Buffer Solutions

studocu

How do buffers work?

 now we know how to make a buffer, but how exactly do they maintain pH?

1. neutralize external sources of acid or base 2. maintain a roughly constant ratio of [HA]/[A⁻]

Buffer Solutions

Module 5 Acid-Base Equilibria

• IONIZATION:

 $HA (aq) + H_2O (l) \leftrightarrows H_3O^+(aq) + A^-(aq)$ $B (aq) + H_2O (l) \leftrightarrows HB^+(aq) + OH^-(aq)$

• HYDROLYSIS:

 $\begin{array}{l} A^{-}(aq) + H_{2}O(l) \leftrightarrows HA(aq) + OH^{-}(aq) \\ HB^{+}(aq) + H_{2}O(l) \leftrightarrows H_{3}O^{+}(aq) + B(aq) \end{array}$

WATER IS ALWAYS A REACTANT \rightarrow EQUILIBRIA!

lons

docu

Buffer So

Acid-Base Neutralization

Buffers protect against externally added H₃O⁺ or OH⁻ via <u>NEUTRALIZATION</u> reactions:

- ACIDIC BUFFER:
 - $HA (aq) + OH^{-}(aq) \rightarrow A^{-}(aq) + H_2O(l)$ $A^{-}(aq) + H_3O^{+}(aq) \rightarrow HA (aq) + H_2O(l)$
- BASIC BUFFER:

 $HB^{+}(aq) + OH^{-}(aq) \rightarrow B(aq) + H_{2}O(l)$ $B(aq) + H_{3}O^{+}(aq) \rightarrow HB^{+}(aq) + H_{2}O(l)$

WATER IS A PRODUCT \rightarrow <u>NOT</u> EQUILIBRIA!

Acid-Base Neutralizations

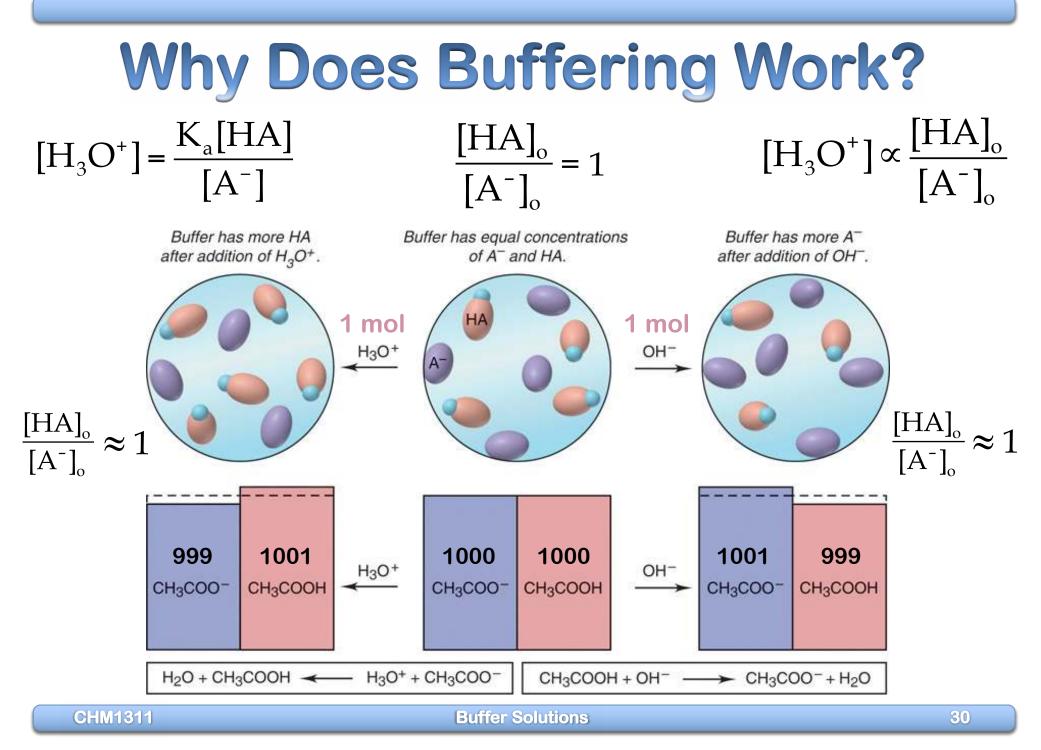
Why is there a 'one-way' arrow?

1 HA (aq) + H₂O (l) \leftrightarrows H₃O⁺(aq) + A⁻(aq) K_a = 1.0x10⁻⁵ 2 H₂O (l) \leftrightarrows H₃O⁺(aq) + OH⁻(aq) K_W = 1.0x10⁻¹⁴

$H_3O^+(aq) + OH^-(aq) \leftrightarrows 2 H_2O(l)$ $K' = 1/K_W = 1.0x10^{14}$

 $HA(aq) + OH^{-}(aq) \Rightarrow A^{-}(aq) + H_{2}O(l)$

 $K_{overall} = K_a \times K' = 1.0 \times 10^9$

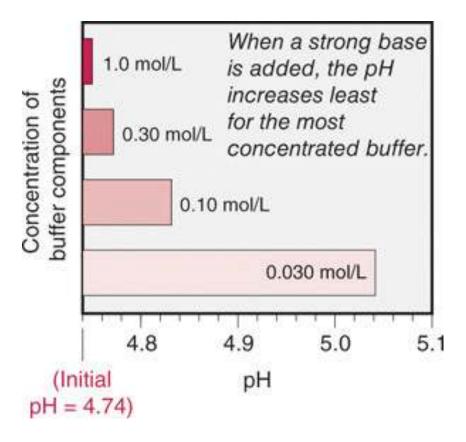

tions

studocu

3 = rev of (2)

Downloaded by Montada Mahmoud (montada78@gmail.com)

Buffer Sol

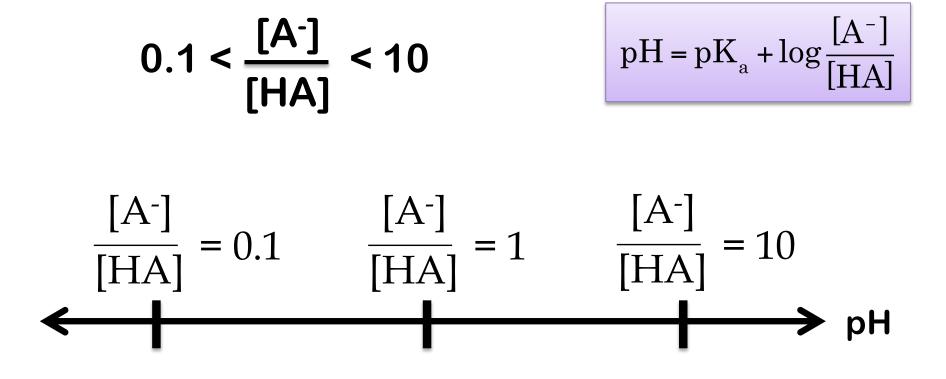


Buffer Capacity

- **Buffer capacity** is the amount of acid or base that a buffer can neutralize before its pH changes appreciably.
 - Maximum buffer capacity exists when [HA] and [A-] are <u>large</u> and approximately equal to each other.

Buffer Capacity Illustrated

4 different CH₃COOH/CH₃COO⁻ buffers:


- All 4 have $[HA]_o = [A^-]_o$
- All 4 have the same initial pH = pKa

<u>Add 0.010 mol/L NaOH:</u>

- Top buffer changes by 1%
- Bottom buffer changes by 33%!

Buffer Range

• <u>Buffer range</u> is the pH range over which a buffer effectively neutralizes added acids and bases.

tions

studocu

Buffer Sol

Buffer Range

• **<u>Buffer range</u>** is the pH range over which a buffer effectively neutralizes added acids and bases.

$$0.1 < \frac{[A^-]}{[HA]} < 10$$

 $pH = pK_a - 1$
 $pH = pK_a + \log \frac{[A^-]}{[HA]}$

$$pH = pK_a \pm 1$$

Buffer Solutions

Example: Working with Buffers

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

- a) What is the pH of the buffer?
- b) 10.0 mL of 1.00 M HBr is added to 500 mL of the buffer. What is the new pH?
- c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

a)

WANT:
$$pH = ?$$
1 $0.1 < \frac{[A^-]}{[HA]} < 10$ 2[HA] and [A^-]HAVE: $[HA] = 0.131 \text{ M}$ $= 1.17$ $10^{-1} \text{ M} >> 10^{-5}$ $K_a = 1.8 \times 10^{-5}$

docu

Buffer So

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

- a) What is the pH of the buffer?
- b) 10.0 mL of 1.00 M HBr is added to 500 mL of the buffer. What is the new pH?
- c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

a)
$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

= $-log(1.8 \times 10^{-5}) + log(\frac{0.153}{0.131})$
= $4.74 + 0.067$
= 4.81

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

- a) What is the pH of the buffer?
- b) 10.0 mL of 1.00 M HBr is added to 500 mL of the buffer. What is the new pH?
- c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

b) We have a choice: WORK IN MOLES WORK IN CONCENTRATIONS

? mol HA = 0.500 L x
$$\frac{0.131 \text{ mol}}{\text{L}}$$
 = 0.0655 mol

? mol A⁻ = 0.500 L x
$$\frac{0.153 \text{ mol}}{\text{L}}$$
 = 0.0765 mol

? mol
$$H_3O^+$$
 added = 0.0100 L x 1.00 mol = 0.0100 mol

docu

Downloaded by Montada Mahmoud (montada78@gmail.com)

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

- a) What is the pH of the buffer?
- b) 10.0 mL of 1.00 M HBr is added to 500 mL of the buffer. What is the new pH?
- c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

b) We use a 'BAMA' table to keep track of the neutralization:

	A	+ H ₃ O+ -	→ HA +	H₂O
BEFORE	0.0765		0.0655	_
ADDITION		0.0100		_
MODIFICATION	-0.0100	-0.0100	+0.0100	_
AFTER	0.0665	0	0.0755	_

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

- What is the pH of the buffer? a)
- 10.0 mL of 1.00 M HBr is added to 500 mL of the buffer. What is the new pH? b)
- 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new C)pH?

b) $V_{total} = 0.500 L + 0.0100 L = 0.510 L$

> [HA] = 0.0755 mol/0.510 L = 0.148 Mmol HA = 0.0755 mol

 $mol A^{-} = 0.0665 mol$

 $[A^{-}] = 0.0665 \text{ mol}/0.510 \text{ L} = 0.130 \text{ M}$

IS THIS STILL A BUFFER?

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

- a) What is the pH of the buffer?
- b) 10.0 mL of 1.00 M HBr is added to 500 mL of the buffer. What is the new pH?
- c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

b)
$$1 \quad 0.1 < \frac{[A^-]}{[HA]} < 10$$
 2 [HA] and [A⁻]
> 100 x K_a
= 0.878 10⁻¹ M >> 10⁻⁵

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

- a) What is the pH of the buffer?
- b) 10.0 mL of 1.00 M HBr is added to 500 mL of the buffer. What is the new pH?
- c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

b)
$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

 $= -log(1.8 \times 10^{-5}) + log \frac{(0.130)}{(0.148)}$
 $= 4.74 - 0.056$
 $= 4.68$
initial pH
 $= 4.81$
 $\Delta pH = -0.13$
 $\Delta pH = -0.13$
 $\Delta pH = -0.13$

ilons

docu

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

We have a choice: WORK IN MOLES WORK IN CONCENTRATIONS

$$V_{\text{total}} = 0.500 \text{ L} + 0.0700 \text{ L} = 0.570 \text{ L}$$
 $C_2 = \frac{C_1 V_1}{V_2}$

$$\frac{2 \mod HA}{L} = \frac{(0.131 \text{ M})(0.500 \text{ L})}{(0.570 \text{ L})} = 0.115 \text{ M}$$

$$\frac{\text{mol } A^{-}}{\text{L}} = \frac{(0.153 \text{ M})(0.500 \text{ L})}{(0.570 \text{ L})} = 0.134 \text{ M}$$

$$\frac{\text{mol OH} - \text{added}}{\text{L}} = \frac{(1.00 \text{ M})(0.0700 \text{ L})}{(0.570 \text{ L})} = 0.122 \text{ M}$$
CHM1311
Buffer Solutions

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?


We use a 'BAMA' table to keep track of the neutralization:

	НА	+ OH	→ A- +	H ₂ O
BEFORE	0.115		0.134	_
ADDITION		0.122		-
MODIFICATION	-0.115	-0.115	+0.115	_
AFTER	0	0.007	0.249	_

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

- c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?
 - [OH-] leftover = 0.007 MSTRONG BASE, BUT LOWER CONC'N[A-] = 0.249 MWEAK BASE, BUT HIGHER CONC'N

What's more important?

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

How much of 0.249 M A⁻ hydrolyzes in the presence of 0.007 M OH-?

	A - ·	⊦ H₂O	⇒ H	A +	OH-
Ι	0.249	-	()	0.007
С	-x	-	+;	x	+x
E	0.249 – <i>x</i>	-	2	C	0.007 + <i>x</i>

$$K_{b} = \frac{K_{W}}{K_{a}} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

docu

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

How much of 0.249 M A⁻ hydrolyzes in the presence of 0.007 M OH-?

$$5.6 \times 10^{-10} = \frac{(x)(0.007 + x)}{0.249 - x}$$
ASSUMPTION
Since K_b << 1, x is small!

$$5.6 \times 10^{-10} = \frac{(x)(0.007)}{0.249}$$

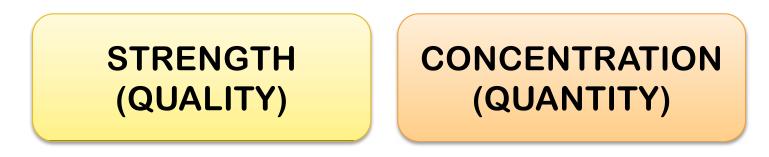
$$x = 2.0 \times 10^{-8} \text{ mol/L}$$

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

How much of 0.249 M A⁻ hydrolyzes in the presence of 0.007 M OH-?

	A - ·	+ H ₂ O	≒ HA	+ OH-
Ι	0.249	-	0	0.007
С	-x	-	+x	+x
E	0.249 – <i>x</i>	-	x	0.007 + <i>x</i>

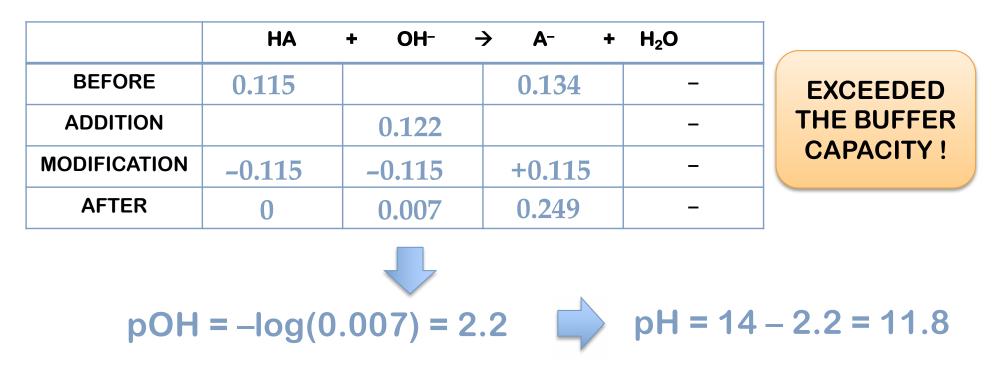

docu

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

$$[OH^{-}]_{eq} = 0.0070 + x = 0.0070 + 2.0 \times 10^{-5} \text{ mol/L}$$

= 0.0070 M


What's more important?

A buffer contains 0.131 M acetic acid and 0.153 M acetate.

c) 70.0 mL of 1.00 M NaOH is added to 500 mL of the buffer. What is the new pH?

We use a 'BAMA' table to keep track of the neutralization:

Buffer Sol

s document is available on

tions

studocu

- 1. Common Ion Effect
- 2. Buffer solutions
- 3. The Henderson-Hasselbalch Equation

Cumulative Problem: Preparing buffers

Your lab TA asks you to prepare a buffer solution with a pH of 7.40. The following reagents are all available to you:

- 550 mL of 0.200 M HCOOH
- 450 mL of 0.200 M HOCI
- solid NaHCOO
- solid NaOCI
- a) Which 2 ingredients will you use to prepare the desired buffer?
- b) What is the base/acid ratio in the desired buffer?
- c) What mass (in g) of solid base must you dissolve in the corresponding acid solution to achieve the desired buffer pH?
- d) If 1.00 mL of 1.00 M NaOH is added to the buffer solution, what will be the new pH?

CHM1311

Buffer Solutions

This document is available on

studocu